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Abstract
The upper beach, between the astronomical high tide and the dune-toe, supports habitat and recreation along many beaches,
making predictions of upper beach change valuable to coastal managers and the public. We developed and tested a Bayesian
network (BN) to predict the cross-shore position of an upper beach elevation contour (ZlD) following 1 month to 1-year intervals
at Fire Island, NewYork.We combine hydrodynamic data with series of island-wide topographic data and spatially limited cross-
shore profiles. First, we predicted beach configuration of ZlD positions at high spatial resolution (50 m) over intervals spanning
2005–2014. Compared to untrained model predictions, in which all six outcomes are equally likely (prior likelihood = 0.16), our
prediction metrics (skill = 0.52; log likelihood ratio = 0.14; accuracy = 0.56) indicate the BN confidently predicts upper beach
dynamics. Next, the BN forecasted three intervals of beach recovery following Hurricane Sandy. Results suggest the pre-Sandy
training data is sufficiently robust to require only periodic updates to beach slope observations to maintain confidence for
forecasts. Finally, we varied input data, using observations collected at a range of temporal (1–12 months) and spatial (50 m
to > 1 km) resolutions to evaluate model skill. This experiment shows that data collection techniques with different spatial and
temporal frequencies can be used to inform a single modeling framework and can provide insight to BN training requirements.
Overall, results indicate that BNs and inputs can be developed for broad coastal change assessment or tailored to a set of
predictive requirements, making this methodology applicable to a variety of coastal prediction scenarios.
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Introduction

Sandy coasts, including mainland beaches and barrier islands,
are dynamic landforms on which morphologic evolution oc-
curs over a variety of temporal and spatial scales. Change in
these environments is controlled by a combination of factors

including antecedent geology (Belknap and Kraft 1985; Riggs et
al. 1995; Schwab et al. 2000), oceanographic conditions (e.g.,
Wright and Short 1984), sediment supply (Carter et al. 1987;
Yang et al. 2005; Hapke et al. 2010), storm frequency and im-
pacts (Morton and Sallenger 2003), sea level rise (Fitzgerald et al.
2008; Lorenzo-Trueba and Ashton 2014), and human interven-
tion and infrastructure (ASBPA National Beach Nourishment
Database 2017; Program for the Study of Developed
Shorelines and references therein 2017), all of which can evolve
independently alongshore and through time. Understanding and
anticipating the evolution of dynamic coastal systems is critical
in order to manage natural resources, and maintain existing and
future communities and infrastructure (U.S. Climate Change
Science Program 2009; Melillo et al. 2014). To identify, monitor,
andmodel current and future areas of persistent vulnerability and
prepare for short-term (storms, seasons to sub-annual) change,
spatially and temporally comprehensive beach and dune mor-
phologic observations are necessary.

Ideally, long-term (i.e., decades) coastal change observations
with sub-seasonal site-specific frequency are collected at a
study site. A long, high temporal resolution record provides
detailed understanding of short-term morphologic behavior,
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which we define here as less than 1 year, in addition to long-
term trends and the influence of storms. Sustained coastal mon-
itoring programs (e.g., Duck, North Carolina (Field Research
Facility Data Portal 2017) and Narrabeen, Australia (Turner et
al. 2016)) are able to measure event-scale processes such as
storm-induced coastal change as well as monitor beach and
dune recovery, which is generally thought to occur over years
to decades (Morton et al. 1994; Priestas and Fagherazzi 2010;
Houser et al. 2015). Recovery trends can be interrupted by
small magnitude storm events, seasonal fluctuations in mor-
phology, and localized human intervention, thus return of ma-
terial to beaches and dunes is spatially and temporally non-
linear (Lee et al. 1998; Houser et al. 2015). Therefore, consis-
tent and repeat surveys comprising a multi-year research pro-
gram are necessary to observe the range of individual storms to
natural beach and dune accretion.

In addition to observational data, models that predict coast-
al morphologic change can fill important gaps in our under-
standing and better anticipate where beaches may be more
vulnerable or resilient to change, but none is without tradeoffs.
A variety of empirical models have been developed to predict
shoreline change and evolution of the beach and barrier island
profile (e.g., Wright et al. 1985) from daily (Splinter et al.
2017) to long-term (decades to millennia) dynamics
(Lorenzo-Trueba and Ashton 2014). However, such formula-
tions routinely simplify the complexity of the system and
governing equations by assuming equilibrium shoreline posi-
tion (Miller and Dean 2004; Yates et al. 2009; Splinter et al.
2014) or limiting the dimensions of sediment transport to
cross shore (Lorenzo-Trueba and Ashton 2014) or alongshore
fluxes (e.g., Pelnard-Considere 1956). Further, as noted by
Reeve et al. (2016), empirical formulations Btend to be process
or scenario specific,^ which can limit the transferability be-
tween sites or time scales. Alternatively, process-based
models such as XBeach (Roelvink et al. 2009) can be tuned
to successfully reproduce site-specific morphologic predic-
tions during storms, but are often impractical to apply region-
ally or over months to years to predict accretion due to com-
putational expense (Reeve et al. 2016).

Bayesian networks (BNs) have gained popularity as a com-
putationally inexpensive predictive tool and an alternative to
empirical and process-based models that can account for un-
knowns and quantify uncertainties within numerous fields of
earth science, including coastal research (Hapke and Plant
2010; Plant and Holland 2011; Plant and Stockdon 2012;
Lentz et al. 2016). BNs are statistical inference tools which
can incorporate qualitative and quantitative observational data
to predict the likelihood of an outcome, which is used to report
prediction confidence. Probabilistic models in the form of BNs
do not attempt to resolve discrete physical processes such as
sediment transport and wave forces in coastal settings and
therefore are able to increase model efficiency and reduce sys-
tem complexity to a set of observable conditions. Newly

acquired data can be routinely and efficiently incorporated into
a BN (Palmsten et al. 2013), which is advantageous in dynamic
environments such as barrier islands. These traits allow BNs to
supplement the application of empirical and multi-dimensional
process-based models for temporal and spatial scales over
which fewer constraints are known for process controls.

Existing barrier island BNs predict coastal change resulting
from temporal end-members: sea level rise (Gieder et al. 2014;
Gutierrez et al. 2015; Plant et al. 2016) and storms (Plant and
Stockdon 2012; Palmsten et al. 2014; Wilson et al. 2015). Sea
level rise studies target first-order controls on coastal change
which inform morphologic predictions on decadal to centen-
nial time scales corresponding to global sea level rise projec-
tions. BNs designed to predict storm impacts emphasize pre-
storm morphology and short-term hydrodynamic processes.
However, neither application emphasizes monthly to inter-
annual time scales, which can be critical to support short-
term landscape and habitat management. Furthermore, past
studies have demonstrated that BNs can be used to directly
assimilate observations (Hapke and Plant 2010) and success-
fully reproduce observed changes that were used in model and
training (i.e., hindcasting) (Gutierrez et al. 2011, 2015). In
order to expand beyond hindcast studies toward prediction
of future coastal change (i.e., forecasting), there is a need to
evaluate BN ability to make predictions of coastal change at
locations or over survey intervals not included in training but
have observations available to validate predictions.

In our study, we designed three experiments that combine
extensive observations of beach morphology within a BN to
test if the available data have sampled sufficient spatial and
temporal variability to predict upper beach change at Fire
Island, New York on intervals with a maximum of 1 year.
First, using a decades-long time series of topographic beach
surveys, we predict upper beach change at high spatial resolu-
tion along the island, which includes small communities, state
and county parks, and undeveloped wilderness. Next, we pre-
dict beach recovery at varying time intervals along Fire Island
following Hurricane Sandy. Finally, we capitalize on a variety
of data types and explore the ability of BNs to make predictions
across a variety of spatial scales and survey intervals that range
from 1 month to a year. In the third test, sub-sampling of mor-
phologic input data and evaluation of predictive skill provides
insight to the minimum data requirements of a BN to confident-
ly predict upper beach change, which can be used to guide
standards of practice for future coastal monitoring efforts.
Furthermore, the resulting framework provides a reduced com-
plexity model useful for decision-making applications.

Study Site

Fire Island (Fig. 1) is a 50-km-long barrier island seaward
from the south shore of Long Island, New York. An
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established research program at Fire Island, New York has
provided an understanding of local morphologic and hydro-
dynamic processes (Leatherman 1985; Lentz et al. 2013;
Schwab et al. 2013; Schwab et al. 2014; Warner et al. 2014;
Hapke et al. 2016) and a morphologic dataset (Table 1 in
Supplemental Material) from which probabilistic models can
be built and validated. Additionally, the severe impacts of
Hurricane Sandymake Fire Island an ideal location to develop
and test a BN to predict upper beach change, particularly
related to recovery.

The majority of the island is within the Fire Island
National Seashore and is managed by the National Park
Service (NPS), although land use varies along the island.
Within NPS-owned land, including the Otis Pike Fire
Island High Dune Wilderness (herein: the Wilderness),
development is limited to maintenance facilities, bayside
marinas, and beach access walkways for visitors. On the
east and west ends of the island respectively, Smith Point
County Park and Robert Moses State Park maintain large,
day-use facilities and infrastructure. Seventeen communi-
ties are interspersed within the national seashore and are
comprised mainly of privately owned homes and busi-
nesses with few paved roads. Large-scale anthropogenic
beach modification, including beach scraping (Bruun
1983; Kratzmann and Hapke 2012) and nourishment, on
Fire Island has historically been focused within the com-
munities, state and county parks, as described by Lentz et
al. (2013). The island is bound by Fire Island Inlet in the

west and Moriches Inlet in the east, and includes the
Wilderness Breach, which formed during Hurricane
Sandy in the eastern portion of the island and remains
open as of December 2017.

The south shore of Long Island, including Fire Island, is
affected by both extra-tropical and tropical storms, including
five named storms since 2005 (Fig. 2) whose impacts have
ranged from beach and dune erosion during the majority of
storms to accretion in response to Hurricane Irene in 2011
(Brenner et al. 2018). In October 2012, Hurricane Sandy,
the largest storm on record in the Atlantic basin (Blake et
al. 2013; Safak et al. 2016; Warner et al. 2017), resulted
in severe beach and dune erosion, widespread overwash,
and multiple island breaches at Fire Island (Hapke et al.
2013). Hurricane Sandy was followed by several large,
unnamed nor’easters and winter storms through the spring
of 2013 (Hapke et al. 2013, 2016). The combined impacts
of Hurricane Sandy and an unusually harsh winter result-
ed in an eroded beach state through April 2013 (Hapke et
al. 2013; Brenner et al. 2018).

Immediately prior to Hurricane Sandy, the U.S. Geological
Survey collected GPS data at ten locations to evaluate pre-
storm morphology (Henderson et al. 2016). The ten original
locations, plus five additional locations (Fig. 1), herein
are collectively referred to as Bprofiles,^ have been
resurveyed every 1 to 4 months since October 2012
(Henderson et al. 2016, 2017). Data collection at the pro-
file locations is ongoing as of December 2017. The post-

Fig. 1 Map of Fire Island, New York, showing the important state,
county, and national park management zones and communities. Inset
shows location of Fire Island in relation to Long Island and

northeastern US coastline. The GPS profiles used to track post-
Hurricane Sandy recovery are shown as black hashes. The alongshore
coverage by 50-m spaced transects is indicated by the gray curve
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Sandy profile dataset augments an existing historic dataset
comprised of aerial photographs, an island-wide GPS sur-
vey, and 20 topographic lidar surveys collected since
1998 (see Table 1 in Supplemental Material). The histor-
ical data serve as a baseline of morphologic conditions
while the profile dataset is a consistent time series de-
signed to monitor post-Sandy recovery of the beach.
Altogether, these datasets have the potential to support a
robust data-based probabilistic model.

Fire Island Upper Beach Zone

We use a newly developed metric, beach change envelope
(BCE), to track and predict short-term beach evolution
(Hapke et al. 2015; Brenner et al. 2018). The BCE is a zone
on the upper beach derived from the elevations of historic
storm wave impact and bound by two location-specific
elevation contours, Zl and Zu; for Fire Island, these eleva-
tion contours are 1.7 m (Zl) and 2.9 m (Zu) NAVD88
(Fig. 3). At Fire Island, the upper beach contained within
the BCE is critical for island-wide accessibility via beach
driving and supports endangered piping plover habitat and
recreational use. Thus, predictions of sub-annual beach
configuration in this zone are of value to NPS managers,
community managers, and the public.

The Zu and Zl identified for Fire Island are above the influ-
ence of astronomical tides, making the BCE less temporally
variable than the mean high water shoreline, yet also more
sensitive than the more landward dunes to the seasonal chang-
es in morphology driven by hydrodynamic conditions. In
comparing the two boundaries of the BCE, Zu is less variable

than Zl over the timescales of interest in this research. With the
exception of large erosional events when Zu position can shift
landward rapidly, seaward Zu movement is associated with
longer term recovery processes spanning multiple years
(Brenner et al. 2018). The position of Zl is more dynamic
and directly influenced by seasonal to annual transitions in
the lower beach morphology between reflective and dissipa-
tive profiles (Short and Hesp 1982). Therefore, the seasonal
fluctuations in Zl position largely determine the BCE position
(Fig. 3b) and BCE width (BCEw). As a proxy for upper beach
width, Zl is a valuable metric to rapidly quantify the short-
term variations in beach morphology.

Prediction Methodology

We predict the deviation of the lower BCE contour, Zl, from
the historical average cross-shore position using a probabilis-
tic approach (Bayesian Networks, as described in the follow-
ing subsection). We subtracted each observed Zl position
within the time series from the 17-year average Zl position
(1998–2015) to calculate the Zl deviation from average
(ZlD) using:

D x; tð Þ ¼ Zl xð Þ−Zl x; tð Þ ð1Þ
where x denotes the alongshore location, t denotes the sur-

vey date of observed Zl, and Zl is the historical average Zl

position. Using a mean-removed metric such as ZlD pro-
vides a reference between the current beach configuration
and the historical average. Positive ZlD values reflect Zl

positions that are seaward of the mean and negative
values are landward of the mean (Fig. 3b).

Fig. 2 Timeline of morphologic data used for Bayesian Network training
and testing. Full island surveys (bottom) were intermittently collected
between 1998 and 2015. Dates shown in green and blue indicate data
sampled by the long-interval and short-interval datasets, respectively.

Profiles were surveyed every 1 to 4 months via GPS between October
2012 and June 2016. Named storms to impact Fire Island, NYare marked
on the timeline
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Bayesian Networks

BNs are a form of directed acyclic graph where input vari-
ables, in the form of nodes, have causal links between vari-
ables representing the dominant processes and controls on
system behavior (Jensen and Nielsen 2007); in our network,
the target variable represents Zl position. All nodes in the BN
represent variables whose values are discretized to bins; when
input data are continuous, bin boundaries are based on the
need to balance descriptive value and predictive skill, as
outlined in Plant and Holland (2011) and Fienen and Plant
(2015). BNs generate predictions of a likely outcome based
on knowledge, acquired through computing joint conditional
probabilities of input variables using Bayes Theorem:

P EijOj
� � ¼ P OjjEi

� �
*P Eið Þ� �

P Oj
� � ð2Þ

The left side of the equation is the updated, or posterior,
probability of an event, given all observations(Ei|Oj). The
right side of the equation expresses the probability of the ob-
servations given the likelihood of the event (Oj| Ei) multiplied
by the prior expectation of the event (Ei) and normalized by
the prior probability of the observations (Oj). The process of
learning conditional probabilities and storing those values in

conditional probability tables is termed training; the margin-
alized conditional probabilities without constraints return the
prior probabilities for each variable. The process of calculat-
ing a posterior probability of the target variable, in the form of
a hindcast or forecast, is a prediction.

We present a morphologic BN (Fig. 4) to predict ZlD, our
representation of the morphologic evolution of upper beach,
and a hydrodynamic BN (Fig. 5) which assimilates 18 years of
deterministic model output, to produce detailed hindcasts of
water levels that correspond with the survey dates of morpho-
logic observations. Both nets are constructed using Netica
software and trained with the expectation-maximization
(EM) or count learning algorithms (Norsys 2010). The mor-
phologic BN was trained with the EM method based on the
robustness of the algorithm to manage cases where inputs are
missing from the training data (Do and Batzoglou 2008;
Norsys 2010). We chose the less computationally expensive
count learning method to train the hydrodynamic BN because
there were many more input datasets available for training.

We selected parameters and structure for the morpho-
logic BN (Fig. 4) based on existing knowledge of controls
on beach change, systematically testing and tailoring
these components to best represent physical drivers of
beach evolution at Fire Island. Building upon the conclu-
sions and previously published sensitivity analyses of

Fig. 3 a Photograph of the Otis
Pike Fire Island High Dune
Wilderness directed east. The
dashed box highlights the beach
change envelope (BCE). The red
(Zu) and green (Zl) stars mark the
approximate elevation boundaries
of the BCE. b Schematic
modified from Brenner et al.
(2018) of an average beach profile
(dashed line) and variability of
beach configuration (blue and
green profiles). Positive and
negative ZlD values indicate a
seaward or landward deviation
from average, respectively
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Hapke and Plant (2010), Plant and Stockdon (2012),
Gutierrez et al. (2015), and Wilson et al. (2015), we in-
cluded parameters to reflect oceanographic conditions
such as total water level (η98), historical behavior of the
beach (long-term change rates of Zu and Zl), beach mor-
phology (slope and BCEw), and alongshore variability in
anthropogenic modification (AM) of beach morphology.
The morphologic data and the oceanographic conditions
were compiled into casefiles for the BN by paired survey
dates that define a survey interval. From these pairs, mor-
phologic data (BCEw, slope, ZlD) were extracted from the
start or end of a survey interval and the oceanographic
conditions were parameterized from a time series span-
ning the survey interval.

Anthropogenic modification class (AM) and long-term
change rates of Zu and Zl (ZuC and ZlC) are indicative of

large-scale processes relating to sediment dynamics over years
to decades. Collectively, Zu and Zl linear regression rates (ZuC
and ZlC) and AM highlight alongshore differences in natural
sediment availability and beach management practices, which
can have a direct impact on upper beach width (BCEw) and Zl
position. The hydrodynamic drivers, maximum total water
level (η 98

max) and the elevation of the 90th percentile of total
water level (TWL90), represent seasonal and storm-event
oceanographic conditions which control beach evolution
over days to months. Beach conditions at the beginning
of each survey interval are represented by prior slope.
BCEw, slope, and ZlD are extracted from the survey
interval end date (Fig. 4).

The available data that inform the morphologic BN span a
range of density in time and space. Full island topographic
data provided spatially dense but temporally limited
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observations while profiles collected between October 2012
through June 2016 (Fig. 2) are spatially limited, but temporal-
ly dense (Hapke et al. 2013; Henderson et al. 2016, 2017).
Topographic data derived from lidar (aerial and terrestrial),
photogrammetrically processed historical aerial photos, or
GPS converted to a digital elevation model were extracted at
cross-shore locations spaced 50 m alongshore, herein referred
to as Btransects.^ The transect data capture a range of morpho-
logic conditions: five datasets were collected in response to a
named storm (Fig. 2), three datasets collected after Hurricane
Sandy and the winter of 2013 capture multi-year recovery, and
the remaining datasets are classified as intermediate. The sur-
vey intervals for available transect data span up to 26 months;
however, we limited model training and testing to case files
with survey intervals with a maximum of 1 year. This was
done to minimize uncertainty of measured prior beach slope,
which was used to calculate η98 and assumed to remain con-
stant through the time series of each η98 hindcast. The transect
survey intervals were classified as either long-interval (be-
tween 6 and 12 months) or short-interval (less than 3 months:
August—October 2011; October—November 2012; April—
June 2014) and these classifications will be used to refer to
these time intervals throughout the paper (Fig. 2). Methods to
extract parameters from source datasets are explained in the
Supplemental Material. Table 1 displays the nine variables
used within our morphologic BN, bin discretization, and input
uncertainty.

We used a separate BN to hindcast time series of total water
level (η98) (Fig. 5) in order to generate maximum total water
level (η98max) and 90th percentile total water level (TWL90) as
inputs to the morphologic BN. The hydrodynamic BN assim-
ilates offshore wave observations, tidal and beach slope data,
and results of hydrodynamic and spectral wave modeling. The
hydrodynamic and spectral wave modeling data begins with
the US East Coast (5 km grid cells), scales down to resolve the
Fire Island nearshore (5–40 m grid cells) (Warner et al. 2017;
Safak et al. 2017), and covers 18 years between 1994 and
2012. A parametrization of measured tides, wave set-up, and
swash (η98; Stockdon et al. 2006) is often used to predict
storm-scale impacts to the beach and dunes (Stockdon et al.
2007). During fair-weather conditions, η98 elevation can be
used to approximate dry beach width (i.e., distance between
the water line and dune toe) which is known to influence
beach and dune recovery processes through cross-shore eolian
fetch distance (Davidson-Arnott and Law 1996; Delgado-
Fernandez 2011). Therefore, we expect η98 to be an informa-
tive parameter to relate to the beach morphology during both
calm and energetic wave conditions.

We used the hydrodynamic BN as a means to evaluate a
wide-range of storm and fair-weather wave conditions, which
in turn allowed us to represent uncertainty in observations,
model output, and the run-up parameterization (Stockdon et
al. 2006), herein referred to as S2006. The nodes in the

hydrodynamic BN were selected to reproduce S2006 and
η98 calculation. Figure 5 illustrates the principle steps of inte-
grating wave, tidal and morphologic data for training and
hindcasting with the hydrodynamic BN (Plant et al. 2014).
To train the BN, observations from the offshore buoy and
deterministic model output were condensed into a database
(Long et al. 2014) which describe the most likely offshore
and nearshore wave conditions. The nearshore wave height
and period from the database were combined with measured
beach slope within S2006 and measured tide was added from
the nearest tidal stations (Montauk, NYand Sandy Hook, NJ)
to calculate η98. This process was repeated for approximately
8.5 million joint combinations of wave, slope, and tidal obser-
vations to train the BN for numerous hydrodynamic scenarios.
Additional details regarding the model parameters and BN
training are outlined in the Supplemental Material.

The hydrodynamic BN produces time series hindcasts of
η98 at less than 100-m alongshore spacing at hourly intervals
for a pair of dates corresponding to the morphologic survey
intervals. To generate hindcasts of η98, a time series of off-
shore waves, tide observations, and a measured beach slope
are supplied to the hydrodynamic BN. The peak elevation of
the predicted η98 time series (η98max) and the 90th percentile
η98 (TWL90) are used as inputs to the morphologic model that
predicts ZlD. An advantage of TWL90 is that the values sum-
marize the majority of wave conditions during a survey inter-
val, whereas η98 max represents the peak condition. Thus
TWL90 represents fair-weather and beach-building conditions
included in the morphologic BN, while η98max represents the
most energetic wave conditions observed during a given sur-
vey interval.

Experiment Design

BN training is the estimation of conditional probabilities of
input data, whereas the prediction generates the posterior
probability of an event, given a combination of input obser-
vations. In making a prediction, the observations of the pre-
dicted variable (ZlD) are withheld from the model at the time
of prediction, while the other predictor variables are supplied
to the trained model to produce an expected likelihood of an
outcome. There are six binned ZlD outcomes in the morpho-
logic BN that range from much more seaward than average
(40.0–75.0 m) to much more landward than average (− 200 to
− 30 m) Zl position (Table 1). The number and spacing of ZlD
bins were selected to disperse observations among bins, en-
suring the variety of scenarios captured by the data were rep-
resented within the BN training. For model calibration, the
testing data comprises a portion or all of the training data,
whereas for validation, the testing data are not contained with-
in the training data. In both calibration and validation, the
testing data are compared to the prediction to assess predictive
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skill. We designed three validation experiments to (1) predict
ZlD at the transects, spaced at 50 m, spanning a range of land-
use and observed coastal changes; (2) forecast post-Sandy
beach recovery at three available dates (October 2013, April,
and June 2014); and (3) identify data requirements for BN
training to produce confident and accurate predictions be-
tween datasets comprised of a range of spatial and temporal
resolutions.

For the first experiment, the alongshore predictions, we
trained the BNwith observations located at the spatially dense
transects (Fig. 1) while the observations from one transect
were withheld from training as testing data. This training
and testing sequence was repeated for 850 transect-specific
iterations. The topographic data used in this experiment com-
prised storm and beach building intervals (Fig. 5); therefore,
we could evaluate the BN predictions across a range of mor-
phologic change scenarios. It is important to note that because
observations were withheld based on location, as opposed to
date, training data and testing data were derived from coinci-
dent survey intervals. The implications of this are considered
in the BDiscussion^ section. In the second prediction test of
post-Sandy beach change, the BN was trained with transect
data from 2005 through April 2013 and generated predictions
for three datasets (October 2013, April, and June 2014) that
recorded beach recovery at 6, 12, and 14 months following
Hurricane Sandy and the winter storms of 2013. In the third
set of predictions, we tested if data collected at different loca-
tions and over intervals of 1–12months could adequately train
a BN for dissimilar datasets. We trained the BN with long-
interval transect data, short-interval transect data, or GPS pro-
files and cross-predicted between the three data subsets. The
short-interval (1–4 months) transect data is a subset of the
spatially dense transect data and was designed to be a bridge
between the temporal scales of the long-interval transect (6–
12 months) and short-interval (< 4 months) profile datasets.

Prediction Evaluation

We used several common statistical metrics including weight-
ed skill, accuracy, and log likelihood ratio (Plant and Stockdon
2012; Fienen and Plant 2015; Gutierrez et al. 2015; Wilson et
al. 2015) to evaluate the ability of the model to generate ac-
curate predictions of morphologic condition and to balance
uncertainty with prediction resolution (Table 2). Weighted
skill uses the amount of variance within the Bayesian predic-
tion (i.e., how broad the probability distribution is) (Plant et al.
2016), and gives more confident predictions greater weight in
the summation (Table 2). For our model, we consider a high
skill value as 0.50 or above which indicates the prediction
explains at least 50% of the observed variance in ZlD (Plant
and Stockdon 2012). Accuracy is a simplemeasure of whether
the predicted most likely outcomematches the bin of observed
ZlD. Accuracy can be quantified by a binary number (0 or 1)
for an individual prediction (N = 1) or as a percentage of cor-
rect predictions over a set (N > 1) (Table 2). In probabilistic
predictions, it is possible that all bins are predicted to be equal-
ly likely. When this occurs, the prediction is considered accu-
rate because the observation falls within a predicted bin, al-
though highly uncertain because all outcomes are equally like-
ly. Predictions made with likelihood above 0.40, a threshold
that is 2.5 times greater than uniform distribution, are consid-
ered a confident prediction for our BN. Similarly, accuracy
above 0.40 is considered to be a high value because the per-
centage of correct predictions is over 2.5 times higher than the
model would achieve from Bguessing.^ In addition to the ac-
curacy metric described above, log likelihood ratio (LLR)
quantifies the combined accuracy and uncertainty for each
discrete prediction. LLR rewards the model for making an
accurate prediction with higher likelihood than the prior and
penalizes the model when the prediction is accurate (i.e., the
observations matches the predicted bin) but is predicted with

Table 1 Variables in the morphologic Bayesian network, input error term, and discretization of bins

Variable Error Bin ID

1 2 3 4 5 6

Prior slope (°) 0.045 0.0–0.05 0.05–0.1 0.1–0.31 – – –

Slope (°) 0.045 0.0–0.05 0.05–0.1 0.1–0.31 – – –

Maximum total water level (m) 0.2 1.0–1.7 1.7–2.9 2.9–4.0 4.0–6.0 – –

90th Percentile TWL (m) 0.2 0.0–1.25 1.25–3.0 3.0–6.0 – – –

BCE width (m) 2.5 0.0–30.0 30.0–60.0 60.0–50.0 – – –

Anthropogenic modification 0 Minimal Indirect Direct – – –

Zu change (m/year) 0.4 − 4.0–− 1.0 − 1.0–0.0 0.0–1.0 1.0–5.0 – –

Zl Change (m/year) 0.7 − 4.0–− 1.0 − 1.0–0.0 0.0–1.0 1.0–5.0 – –

ZlD (m) 2.5 Much more landward
− 200.0–− 30.0

More landward
− 30.0–− 8.0

Average
− 8.0–8.0

More seaward
8.0–25.0

Moderately more
seaward

25.0–40.0

Much more
seaward

40.0–75.0
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lower likelihood than the prior (i.e., hedging). The lowest
values of LLR occur when the prediction is very confident
with a high posterior probability and inaccurate. Each predic-
tion within a time series or across a spatial domain produces
an individual LLR result which can be summed or averaged
across multiple predictions to summarize the set of predic-
tions. We present averaged LLR metrics to simplify compar-
ison of the metric between datasets with different numbers of
observations.

Results

We tested combinations of training data and testing casefiles
within our model containing variables of beach state (ZlD,
slope, BCEw), historic behavior (ZuC; ZlC), oceanographic
conditions (η98max; TWL90), and anthropogenic modification
of beach morphology (AM). In this section, we present results
from the three experiments designed to sample and predict the
total morphologic dataset (Fig. 2) by alongshore location, by
date (pre- or post-Hurricane Sandy), or temporal and spatial
data density.

Alongshore Predictions

Predictions of ZlD position were produced for time series of
beach change at the 850 alongshore transects previously de-
scribed. Each transect was represented by 5–12 observations
for each variable in the morphologic BN. The number of obser-
vations per location varied due to differences in alongshore
coverage of individual surveys and the opening of the
Wilderness Breach (see Table 1 in Supplemental Material). An
example of a location-specific prediction (Fig. 6) shows how
ZlD predictions were compared to the prior probability and

observations for transect locations (Fig. 6: black dots) to validate
each prediction and calculatemetrics (skill, LLR, and accuracy).
The example shown in Fig. 6 was selected based on the pres-
ence of infrastructure and is a location of interest to the NPS.

At Sailor’s Haven (Fig. 6b), the model accurately predicted
the observed ZlD position for 65% of the time series. Themost
likely outcome for each date was predicted with a likelihood
above our confidence threshold of 0.40 (see BPrediction
Evaluation^ section), with a few dates exceeding 0.66 likeli-
hood. The BN correctly predicted ZlD position for two sur-
veys with different observed morphologic conditions—more
seaward than average (August 2010) and more landward than
average (November 2012)—with the highest likelihoods (>
0.66) in the time series. Four dates between October 2011 and
October 2012 were incorrectly predicted. On average, accu-
rate and confident predictions at this location produced high
values for metrics including skill equal to 0.63 and average
LLR of 0.13.

The time series of ZlD predictions at all transects, including
the example from Sailor’s Haven, were compiled and ana-
lyzed by alongshore position, as well as temporal trends and
three classifications of beach state. Figure 7 is arranged such
that each column is a time series of most likely ZlD at a
transect and the rows are the compiled alongshore predictions
for each survey interval end date. To simplify the presentation
of six ZlD bins and confidence levels, the predictions are
displayed (Fig. 7) as a landward deviation (red) or seaward
(gold) deviation or approximately average (blue) ZlD position.
The color scale indicates the confidence in the prediction
(Fig. 7). The following paragraphs will present a summary
of these alongshore predictions highlighting trends in predict-
ed ZlD position and where and when predictions were made
with confidence versus high uncertainty.

ZlD predictions at individual transects oscillated through
time between landward, average, and seaward deviations. As

Table 2 Prediction metrics

Metric Equation Variables Interpretation

Weighted skill 1− ∑α−2 y–ŷ½ �2
∑α−2 ½ y½ �2 ŷ: predicted probability distribution 0.0 to 1.0, with 1 being highest skill

y: the observed value High values demonstrate accurate and
confident predictions

α: uncertainty factor associated with each
prediction input term

Low values indicate high variance, and low
precision; accuracy can increase when
predictions have a uniform distributionThe summation is over all predictions

Log likelihood
ratio

log pi EijOj
� �

Ei¼E j

h i
−log pi Eið ÞEi¼E j

h i
pi(Ei|Oj):probability of the forecast (Ei) given

the observations (Oj)in the discrete bin of
the observed data (Ei = Ej)

Negative value usually indicate incorrect
prediction

pi Eið ÞEi¼E j
: the prior probability of the

forecast (Ei) in the observed bin (Ei = Ej)
Positive value usually indicate an accurate

prediction with higher confidence than
the prior

Accuracy ∑
N

n¼1
Ein ¼ Ejn

� ��
*N−1� N: number of predictions 0.0 to 1.0, with 1 being most accurate

Ei: observed bin

Ej: predicted bins
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a first-order evaluation of model ability, this result demon-
strates that the model is capable of predicting dynamic beach
morphology beyond the prior most likely condition (e.g.,
Fig. 6a), which is a landward deviation from average (ZlD −
30 to − 8 m). Specifically, of the 9825 individual predictions,
the BN predicted a landward deviation for 57%, an average
configuration for 25%, and seaward deviation of ZlD for 18%.
This result can be compared to the prior probabilities of 0.43
for a landward deviation, 0.31 for an average configuration,
and 0.26 for a seaward deviation (Fig. 6a) to demonstrate that
the prediction is not simply reproducing prior probabilities.

The alongshore predictions were also analyzed by beach
state—post-storm, recovery, or intermediate. In each of the
four post-storm surveys (Fig. 7), the BN predicted a landward
deviation for 80–90% of transects; less than 5% of locations
for each post-storm survey were predicted as a seaward devi-
ation. Specifically, in the prediction of upper beach position
following Hurricane Sandy (November 2012), Zl was predict-
ed to have a seaward deviation at less than 2% of transects—
the lowest percentage of the post-storm predictions. In the
recovery intervals, following Irene and Sandy recovery pre-
dictions differed. Predictions for the recovery intervals after
Hurricane Sandy were more variable alongshore and fewer
locations were predicted with confidence (> 0.40 likelihood)
than post-Irene recovery in 2011. In the post-Irene recovery
interval in October 2011, 78% of all transects were predicted
to have an average ZlD with a notable division of predictions
at 39.5 km alongshore distance (ASD), approximately the
boundary of the Wilderness and Smith Point County Park.

West of the boundary, 89% of the island was predicted to be
in an average configuration, while 96% of transects in Smith
Point County Park were predicted as a landward deviation
from average. Predictions for the intermediate survey intervals
ranged from prominently seaward (August 2010) to highly
variable alongshore (October 2012). For August 2010, the
BN confidently predicted a seaward deviation from average
for 83% of transects. The three intermediate intervals in 2012
were less consistently predicted as landward, average, or sea-
ward deviations. In particular, transects from 22 to 32 km
ASD were predicted with variations between landward, aver-
age, or seaward deviations over small spatial scales.

For all alongshore predictions, 77% of predictions were
made with a likelihood above 0.40, which, as stated earlier,
was considered a confident prediction for our BN. Notably,
every transect was predicted with a 0.40 likelihood for at least
one date in the time series, meaning that not a single transect
was invariably predicted with low confidence. Additionally,
15% of transects in the alongshore predictions, mostly located
in the central and eastern zones of the island (12.5–27.5 and
31.5–38.5 km ASD), were predicted with confidence above
0.40 likelihood for all survey dates in the time series. The tract
of NPS land between 27.5 and 31.5 km ASD, which is com-
prised of beaches fronting the Watch Hill ferry terminal and
western portion of the Wilderness, was predicted with lower
confidence than the surrounding transects. The reduced con-
fidence of predictions in this area was apparent in the October
2013 and 2014 survey intervals and can be informative for
NPS management planning. Throughout the time series,

Fig. 6 Plots displaying ZlD
probability for prior (a) and
posterior probability for an
example alongshore prediction at
Sailor’s Haven (b). Warm colors
indicate higher predicted
likelihood and cool colors
indicate lower likelihood in each
ZlD bin. Black dots are observed
ZlD position through time. b
Overlap of the observation and
the warmest color per row in (b)
indicates an accurate prediction.
Dark gray locations on the map
mark NPS tracks. Sailor’s Haven
is marked with the black dash
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prediction confidence tended to be lower on the eastern and
western ends of the study area. For survey intervals through
2012, the predictions were confident (> 0.40 likelihood)
for at least 70% of transects. Meanwhile, the predictions
made for 2013–2014 had less than 70% predictions
above 0.40 likelihood. We consider whether aspects of
the model, data availability, or physical processes may
explain the spatial and temporal variability of prediction
confidence in the BDiscussion^ section.

The island-wide metrics (Fig. 8) summarize the predictions
of ZlD time series at 850 transects, including the example
location (Fig. 6). Of the 9825 individual predictions shown
in Fig. 7, 8482 were validated with available observations—
56% of ZlD positions were accurately predicted and 81% had
a positive LLR results. The full island average LLR and stan-
dard deviation averaged over all predictions was 0.14 ± 0.06,
indicating that the island-wide results were an improvement
over the prediction capability using only the prior information.
Skill averaged across all transects was 0.52. Full island pre-
diction metrics summarized in Fig. 8 demonstrate that there

was substantial alongshore variability in LLR, skill, and accu-
racy values. The range of LLR at any transect are visualized
by the length of vertical gray bars in Fig. 8a, wherein at indi-
vidual locations, LLR values vary through the time series of
observed ZlD positions. For example at Sailor’s Haven
(Fig. 6b), individual LLR values ranged from − 0.25, indicat-
ing a confident but incorrect prediction for October 2011, to
0.57, indicating a confident and correct prediction for August
2010. Across the island, the minimum accuracy value was 0.1
and minimum skill was near 0.0 while the maximum for both
metrics approached 1.0. Within the alongshore skill results
(Fig. 8b), some spatial patterns are apparent. In the area of a
historic inlet and the present location of theWilderness Breach
(35–40 km ASD), individual LLR values at two transects
were less than − 1.0, and individual and spatially averaged
skill were below 0.2, which are among the lowest metrics
along the island. Transects in the western part of the island
(0–5 km ASD) produced the highest skill values and consis-
tently positive LLR values, exceeding 1.0 at many transects,
which is above the island average.

Fig. 7 Most likely ZlD predicted at alongshore transects separated by
survey date. Darker colors indicate a confident prediction above 0.40
likelihood. For simplification, landward or seaward deviation bins are
displayed together. A landward deviation is comprised of two ZlD bins,

average is comprised of one bin, and seaward deviation is comprised of
three bins. Gray space indicates locations lacking input observations to
produce a prediction
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Predicting Post-Sandy Recovery

In the second experiment, we used the morphologic BN to
predict the position of ZlD at transect locations for three dates,
all after Hurricane Sandy: October 2013, April 2014, and June
2014. For the survey interval ending in October 2013, approx-
imately 1 year after Hurricane Sandy, the model predicted ZlD
position to be average or more seaward than average position
at 77% of transects (Fig. 9b). Island-wide, the prediction for
October 2013 has the best overall metrics as compared to the
April and June 2014 including accurate predictions at 51% of
transects, weighted skill of 0.17, and average LLR of 0.19.
There are several notable zones of confident and less confi-
dent predictions. The first zone, between 18.5 and 22 km
ASD, ZlD was predicted with likelihood above 0.40, and se-
lect locations exceeding 0.66, to be more seaward than

average and observations (Fig. 9: black dots) show them to
be accurate. The second zone, 9.5–11.4 km ASD, showed
78% of transects predicted to be more seaward than average,
with likelihood greater than 0.40, for ZlD, validated with ob-
servations. In a western zone (6–7.5 km ASD), the model was
less confident and less accurate; there was between 0.30 and
0.40 likelihood that the ZlD would be average or more land-
ward than average for each transect, and the observations
show that the Zl positions were actually more seaward or
moderately more seaward.

In April 2014, the model predicted that ZlD at 40% of
locations would be average, 52% of transects would be more
landward than the average, and the remaining locations (8%)
were predicted to be more seaward than average (ZlD 8–
25 m). Two sections of beach (12.5–15.5 km ASD and 16–
19.5 km ASD) showed predictions were confident and
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Fig. 8 Alongshore predictionmetrics at transects, spaced 50-m along Fire
Island. a Vertical lines demonstrate the range of values of log likelihood
ratios for predictions at transect locations; the time-averaged LLR per
transect (black line) is positive at all but 30 locations. b Weighted skill

(dots). The black line is a moving average of 250-m (5 transects)
alongshore. c Accuracy (dots). The black line is a moving average of
250-m (5 transects) alongshore
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inaccurate; results showed greater than 40% likelihood that
ZlD would be an average configuration; however, ZlD obser-
vations showed that the upper beach position was more land-
ward than average. By contrast, in the Wilderness (31–35 km
ASD), predictions were both accurate and confident; ZlD was
predicted to be more landward than average with likelihoods
nearing 0.50, and validated by observations. ZlD position
closer to the Wilderness Breach (35–36 km ASD) was pre-
dicted to be more landward than average but Zl in this area
was actually much more landward than average.

For June 2014, within the western to central part of the
island, 8.5–20 km ASD, the BN consistently predicted aver-
age position for ZlD with likelihoods from 0.33 to 0.85.
However, the observations varied from more landward than
average to moderately more seaward than average and the
model was incorrect at 65% of transects between 8.5 and

20 km ASD (Fig. 9D). In the eastern portion of the island
(30–35 km ASD), observations showed that the ZlD was ac-
curately predicted as average or as more seaward than average
at 55% of locations. The overall accuracy for June 2014 was
0.40, but correct predictions were concentrated in the east and
many locations in the west were incorrectly predicted. A skill
value of 0.12 and the positive LLR values indicate an overall
improvement of the prediction over the prior (Fig. 9d).

Evaluation of Training Data Requirements

In the third set of predictions, we used combinations of data
subsets to explore the value of temporal or spatial density
within morphologic data to inform a BN. This experiment
aims to provide insight to data acquisition and necessary

a

b

c

d

Fig. 9 Prior probability distribution (a) and predicted ZlD probability for
October 2013 (b), April 2014 (c), and June 2014 (d). Black dots display
observed ZlD for each survey date. Summary metrics for the three
predicted dates are listed at the right. Locations lacking data (black

dots) to validate a prediction are not included in the calculation of
evaluation metrics. Areas classified as direct modification, based on
nourishment frequency and infrastructure, are shown in black in the
inset map
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resolution to predict short-term upper beach change. Spatially
dense transect data were subdivided by the length of survey
interval into short-intervals (1–4 months) and long-intervals
(6–12 months), and combined with temporally dense but spa-
tially limited profile dataset. Therefore, the profile data and
short-interval transects had similar temporal resolution and the
short-interval transects and long-interval transects had similar
spatial resolution.

Training the BN with profile data (Table 3; column 1) pro-
duced mixed results in predicting short- and long-interval
transect data. Short-interval transect data had a skill of 0.09
and a negative average LLR value, both of which indicate a
poor prediction, whereas the long-interval transects resulted in
the highest accuracy (0.48) and the highest average LLR
(0.05) values of the cross-validation tests. Training the BN
with the short-interval transect data (Table 3; column 2) pro-
duced results with the same accuracy value (0.40) with vari-
able skill (0.25 for profile vs. 0.03 for the long-interval).
Negative values of average LLR for both predictions made
with the short-interval training indicated the predictions of
profiles and long-interval transects were more often incorrect
or uncertain over the whole dataset.

When trained with the long-interval transect data (Table 3;
column 3), predictions resulted in the best overall metrics for
this experiment: prediction of the profile dataset had the
highest skill (0.40), and was accurate for nearly half of the
observations. Prediction of short-interval transects resulted in
the second highest skill of these cross-validation tests and over
one-third of observations were correctly predicted.
Comparing the three metrics, the BN trained with long-
interval transects predicted the observed ZlD position at the
profiles than ZlD at the short-interval transects. We expected
that evaluation metrics across the six calibration-validation
tests (Table 3) would exhibit trends that mirror the similarity
of spatial or temporal density of the datasets. However, cross-
predictions between the profiles and long-interval transects
produced the highest values of evaluation metrics and the
short-interval transects reported lower combined metrics.

Discussion

The development of a probabilistic modeling approach that
can incorporate observational data across multiple beach
states and skillfully predict beach changes over sub-annual
to annual time scales is a relevant advancement to coastal
research. The morphologic BN presented here complements
storm-induced morphologic change models (Plant and
Stockdon 2012; Wilson et al. 2015) by advancing our ability
to predict both storm impact and recovery components of
beach change using a single morphologic framework. Our
BN can efficiently produce probabilistic predictions of upper
beach configuration, as represented by ZlD, for storms, short-

term beach building intervals, and multi-year beach recovery
at spatial scales (50 m) and timescales (1–12 months) relevant
to landscape and habitat management.

Alongshore Predictions: Assessment of Overall Model
Function and Outcomes

Of the three experiments, alongshore predictions generated by
our BNweremost successful, making accurate, confident, and
skilled predictions of temporal changes in the beach state
when compared with observations. Generally, the BN predict-
ed post-storm impacts as landward shifts of ZlD, particularly
after nor’easters in 2005 and 2009, and the stormy winter
season of 2013. In the survey interval containing Hurricane
Sandy (November 2012), predictions of ZlD position show
alongshore variability consistent with observed overwash
(Hapke et al. 2013) and storm impacts. For example, predicted
landward movement of ZlD on the western portion of the
island (Fig. 7: Nov. 2012; 3–8 km ASD) corresponds to ob-
served sheet-like overwash of dunes. Irregular patterns of
overwash were observed in the eastern beaches, correspond-
ing to landward and average alongshore fluctuations in pre-
dicted ZlD position. By contrast, for non-storm intervals, av-
erage or more seaward shifts were predicted. This result fol-
lows expected behavior for beach recovery when beach build-
ing material moves onshore in the days and weeks following a
storm. Intermediate periods generally showed greater along-
shore variability than either recovery or storm periods, likely
reflecting the influence of seasonality and human modifica-
tions on beach behavior. As noted in the results, the combined
metrics for the alongshore predictions are considered high,
reporting positive values for alongshore average LLR along
with skill and accuracy above 0.5, with a few alongshore
exceptions that will be explored later in this section.

The overall success in generating accurate alongshore pre-
dictions is somewhat expected given the model design and
training. To make predictions, a specific survey interval at
one transect location was withheld, meaning that data at all
other transects from the same survey interval were available
for training and to inform the model. This meant that each
alongshore prediction had a larger training dataset than any
other experiment, comprised of approximately 10,000 obser-
vations. Extensive training datasets such as this provide the
best opportunity for the model to maximize the number of
unique conditional probabilities learned by the BN
(Palmsten et al. 2014). Due to transect density, however, this
approach incorporates inherent spatial correlation often found
in predictions of coastal morphologic behavior (Hapke et al.
2010). In their assessment of morphologic change over time
scales of greater than a decade, for example, Lentz et al.
(2013) found that spatial correlation of morphologic fea-
tures occurs over approximately 250 m alongshore lengths
at Fire Island. Therefore, it is likely that some of the
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success in the alongshore predictions is attributable to
spatial dependence between predicted and training
transects that is unaccounted for in our methodology,
and is a component to test in future work.

Specific parameters in the modeling framework serve to
further improve alongshore predictions by capturing distinc-
tions in behavior at different locations and for different
oceanographic forcings. Gutierrez et al. (2015) and Wilson
et al. (2015) demonstrated that AM is a valuable BN param-
eter for predicting alongshore variability in the morphologic
beach state on populated barrier islands that is not well repre-
sented by other parameters. In agreement with prior results
(Gutierrez et al. 2015; Wilson et al. 2015), our model predic-
tions demonstrate the influence of AM reflected in predictions
and skill, wherein wider beaches fronting communities and
Robert Moses State Park were accurately predicted post-
replenishment (Fig. 7 wider beaches at ASD13; ASD 19,
and 27) with high skill values (Fig. 8). In addition, the param-
eters of beach slope and width improve the confidence and
skill of the model in predicting ZlD across a range of disparate
recovery paths, such as in the cases of Hurricane Irene and
Hurricane Sandy. Unlike Hurricane Sandy, Irene resulted in
widespread upper beach accretion (Brenner et al. 2018).
Because the prior beach slope, which is calculated at the start
of the survey interval immediately following Irene, informs
the prediction of beach configuration, our 2-month recovery
predictions after Irene showwider beaches with steeper slopes
than other post-storm recovery predictions, such as Hurricane
Sandy. Furthermore, by accounting for high wave energy
through η98max and TWL90, the model is able to differentiate
between storm intensity and thus expected morphologic
change; Hurricane Sandy was correctly predicted to be the
most erosional (via landward shift of ZlD) of any of the five
storms in the dataset.

The long-term change parameters included in the model
reflect geospatial trends due to geological controls on the sys-
tem that are likely to help refine predictions of beach behavior
(Gutierrez et al. 2011). A body of literature has documented
shoreline stability in central Fire Island attributable to erosion
of a lobe of Pleistocene outwash sediment during the
Holocenemarine transgression (Schwab et al. 2013). The west

features erosional hotspots within a long-term elongating spit
due to a combination of sediment availability and shelf mor-
phologic variability, while the east is characterized by
measureable transgression via overwash and inlet creation
due to a sediment-starved shoreface (Leatherman 1985;
Schwab et al. 2000; Schwab et al. 2013; Lentz et al. 2013).
Dune and beach behavior that is in part connected with these
geologic framework regions has been documented in inter-
annual, decadal, and centurial studies at Fire Island (Hapke
et al. 2010; Lentz and Hapke 2011; Lentz et al. 2013; Schwab
et al. 2013; Hapke et al. 2016). Regional patterns of
centennial-scale coastal change are similarly evident in along-
shore predictions and confidence of ZlD (Fig. 7), for example,
by predicting a more stable central reach with high confi-
dence, as compared to wider trending beaches to the west,
and intermittently eroding and accreting beaches further east.

We find a more complicated interpretation of predicted ZlD
in the area surrounding the Wilderness Breach. Following
Hurricane Sandy, predictions on the eastern side of the
Wilderness Breach (36.5 ASD) show a largely consistent
landward deviation in the eastern portion of the island from
October 2013 to June 2014 in agreement with the transgres-
sive behavior historically observed. The prediction of land-
ward deviations can also be explained in part by limited input
data to the model; except for partial spatial coverage in
October 2013, morphologic observations were not collected
east of the breach during the post-Sandy period.
Consequently, many transects in the eastern reach of Fire
Island lacked several inputs (e.g., BCEw, slope, wave param-
eters) in the test case. In cases with reduced-input data, the BN
is less confident than when the test case has all inputs, and
relies more heavily on long-term rates of change (ZuC and
ZlC) which capture the eroding trends in the eastern reach of
Fire Island. As a result, the ZlD posterior probability closely
resembles the prior most likely condition, a landward devia-
tion from average. By contrast, the location of the Wilderness
Breach had ample input data and persistently poor skill, sug-
gesting the existing model parameters do not provide suffi-
cient information to accurately predict behavior at this loca-
tion. Although the BN predicted likelihoods above 0.40 at the
location of the breach, both skill and accuracy are among the

Table 3 Prediction results for transect and profile cross-validation

Testing data Training data

Spatially limited profiles
(1–4 months; N = 320)

Short-interval transects
(1–4 months; N = 2358)

Long-interval transects
(4–12 months; N = 7467)

Avg. LLR Skill Accuracy Avg. LLR Skill Accuracy Avg. LLR Skill Accuracy

Profiles x x x − 0.01 ± 0.37 0.25 0.40 0.04 ± 0.24 0.40 0.47

Short-interval transects − 0.01 ± 0.27 0.09 0.42 x x x 0.04 ± 0.24 0.27 0.37

Long-interval transects 0.05 ± 0.2 0.08 0.48 − 0.03 ± 0.30 0.03 0.40 x x x
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lowest along the island (Fig. 8). This implies that the processes
which contributed to the creation of the breach are inadequate-
ly represented by the BN.

In summary, an assessment of our alongshore predictions
show that we are generally able to accurately and confidently
predict beach behavior in response to storms and during re-
covery periods in a barrier island setting. In addition to de-
tailed observations, our results agree with prior studies (Plant
and Stockdon 2012; Gutierrez et al. 2015; Wilson et al. 2015)
that show BN parameters that capture longer term trends re-
lated to the geology, as well as human modifications to the
system, inform alongshore differences in behavior. However,
the detailed assessment of variability in alongshore metrics
provided here also helps to identify along-coast deviations in
processes or behavior from those represented by our model,
wherein finer-scale, more detailed modeling approaches may
be best applied to generate more accurate and precise predic-
tions. The results presented here suggest Bayesian Networks
can be employed as a computationally inexpensive tool to
address a variety concerns related to monitoring and manage-
ment of coastal barrier and mainland beach settings, helping
also to identify where new or better data, or improved under-
standing of coastal processes may be necessary to inform both
research and decision-making agendas.

Post-Sandy Assessment: Forecasting Beach Recovery

In evaluating outcomes from our second experiment, it is im-
portant to first note that due to seasonal fluctuations and hu-
man modifications, ZlD observations over the three post-
Sandy survey intervals did not demonstrate a monotonic sea-
ward progradation of ZlD in the recovery progression
(Brenner et al. 2018). The majority of our October 2013 ob-
servations were collected in the communities and state and
county parks (51% direct modification, 7% indirect, 42%min-
imal modification; Wilson et al. 2017), to provide cross-shore
profiles ahead of a planned large scale replenishment.
Although the replenishment project was not yet underway,
localizedmovement of sand and sand-bag placement on dunes
was witnessed along the island prior to the October 2013
survey (Owen Brenner, personal communication, May 25,
2016). This modification was captured by the profile data,
resulting in a larger percentage of ZlD positions being seaward
of average than other recovery intervals. By contrast, April
2014 observations captured the seasonal, post-winter signal,
resulting in more depleted beaches and hence, a more land-
ward shift of ZlD (89% of observations). June 2014 observa-
tions were collected in relatively close temporal proximity to
April 2014, wherein significant changes between the periods
would more likely reflect seasonal change as opposed to
sustained post-storm recovery. In sum, the three survey inter-
vals captured a complex morphologic response that included

post-storm recovery processes along with seasonal fluctua-
tions and ongoing engineering projects.

Despite the response complexity, we were able to accurate-
ly predict post-Sandy recovery with likelihoods above a uni-
form distribution for these three periods. The BN predicted a
Zl seaward deviation (ZlD > 8m) at 86% of transects surveyed
in October 2013, accurately resolving the above-mentioned
anthropogenic modifications. Although April 2014 predic-
tions had lower skill than October 2013 (Fig. 9), an average
LLR value close to zero suggests that the predicted ZlD con-
ditions were similar to pre-Sandy island-wide observations
(i.e., the prior probability). June 2014, the survey farthest in
time from the training datasets, was the most successful pre-
diction after October 2013. Here, a shorter survey interval
(April–June 2014) meant that our prior slope measurement
was likely representative through the end of the survey inter-
val and the hindcast of water levels had lower uncertain-
ty, resulting in both positive prediction metrics and high
confidence. Our success in generating post-Sandy pre-
dictions shows that established BNs can continue to use
an existing dataset to make predictions of future short-
term beach behavior.

Worth noting here is that in this paper, we provide a com-
parison of Zl position to a historical average rather than Zl

position relative to a set pre-Sandy baseline. After Sandy,
there is substantial evidence that the Zu and Zl contours at
Fire Island were translated landward substantially which is
incorporated into the average Zl position by using observa-
tions through 2015. Furthermore, although predictions are
possible without adding more to the training dataset, we sug-
gest it is important to collect data periodically that can be used
as the Bprior condition^ to ensure confidence over prediction
timescales. Best practices for developing and training BNs can
be used to inform data collection or guide beach monitoring
programs at Fire Island or other areas more broadly that may
support data-based models.

Effects of Varying Spatial and Temporal Density
of Model Input Data

Contrary to our expectation, the profile and long-interval tran-
sect end-member datasets produced the best cross-validation
metrics while the short-interval transect data produced the
least successful predictions in this test. The composition of
the short-interval transect data may have contributed to this
result. Unlike profile and long-interval transect data, which
had a broad spatial distribution and temporal coverage, the
short-interval transect data were heavily influenced by
Hurricane Sandy. For example, when trained with the short-
interval transect data, we found the prior probabilities of the
short-interval data were shifted toward high values of TWL90

(3–6 m) and low values for slope (0–0.05°), consistent with
the elevated water levels and severe erosion (i.e., flattening of
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the beach) resulting from large storms such as Hurricane
Sandy. Although the long-interval transect data and profile
datasets also included storm intervals, the post-Sandy re-
sponse comprised one-third of the short-interval transect data.
In fact, differences in the TWL90 and slope distributions of the
long-interval transect or profile training datasets (Fig. 6 in
Supplemental Material) implies that the short-interval transect
dataset may not represent a realistic distribution of conditions
at Fire Island beaches. As a result, the skewed prior distribu-
tion of short-interval transects limited the BN to accurately
predict ZlD within the other datasets.

By contrast, the successful predictions made by the BN
when trained with the long-interval transect data or the pro-
files can likely be attributed to generalizable prior probability
for ZlD. For the long-interval transects, the spatial density of
transects and the decade-long time series of post-storm and
recovery intervals within this dataset made it the most gener-
alizable of the three subsets. These characteristics of the data
led to successful prediction of short-interval transects and pro-
file data. Similarly, the profile dataset had a generalizable prior
probability for ZlD achieved through the spatial and temporal
design of the monitoring program. Specifically, the profiles
sampled the geomorphic variability of Fire Island beaches
by being clustered throughout the western, central, and eastern
regions. The three geologic regions of Fire Island have been
shown to express different patterns of barrier island evolution,
ranging from a transgressive system to an actively prograding
spit. The profiles are also dispersed among different zones
of development which reflected different scales of anthro-
pogenic modification within the communities and county
and state parks. In addition, the surveys of spatially lim-
ited profiles were timed to capture a severe storm
(Hurricane Sandy), short-term recovery, and seasonal var-
iability, therefore the observations were not dominated by
a particular hydrodynamic or morphologic condition. We
therefore suggest that the spatial and temporal variability
of the profile dataset compensates for a lack of spatial
coverage or a longer time series, a finding that is partic-
ularly useful in designing and maintaining a cost-effective
monitoring program at Fire Island or elsewhere.

Overall, the results of the cross-validation tests suggest
datasets capturing a variety of beach change and hydrodynam-
ic conditions are most important for successful prediction of
upper beach change within a BN than similarity in spatial or
temporal resolution of the training data. BNs are susceptible to
overfitting a particular set of conditions because a BN cannot
predict (1) conditions outside of pre-determined variable
boundaries or (2) a set of conditions that were previously not
encountered in model training.Our results illustrate that trans-
ferability of a trained BN is not solely questionable between
study sites (Palmsten et al. 2014), but should also be consid-
ered when predicting conditions that are not well represented
in the observational data at one location.

Most importantly, the results of our third experiment show
that datasets collected at dissimilar sampling frequency can be
compiled and used to predict each other with accuracy and
skill values comparable to other BN models for barrier islands
(Gutierrez et al. 2015). When the BN was trained with the
profiles as compared to the long-interval transect data, predic-
tions sacrificed skill (80% reduction) for a 95% reduction in
the number of training data, while accuracy and average LLR
metrics remain high, indicating increased uncertainty
(Table 3). These results demonstrate the ability to extrapolate
spatially limited but temporally dense data (profiles) to spa-
tially dense locations (transects). The ability to integrate data
across a range of collection techniques is particularly informa-
tive for researchers who want to target or optimize data acqui-
sition; infrequent and expensive continuous topographic data
can be augmented or possibly even replaced with more afford-
able and easily repeatable profile data.

Conclusions

In this study, we present a BN to predict beach
morphodynamics on intervals up to a year and investigate
BN ability to predict beach change through rigorous testing
across multiple spatial scales and morphologic configurations.
The results indicate that a BN containing morphologic and
hydrodynamic variables trained with a robust dataset is able
to predict beach change with greater confidence than the prior
likelihood and can predict beach evolution resulting from
storm and non-storm conditions, including beach recovery.
Predictions of ZlD position at 50 m alongshore spacing result-
ed in significant variability in transect-specific prediction met-
rics. Locations with high likelihood of a desired outcome (e.g.,
wide upper beach) have the potential to support decision
makers in habitat and landscape planning on seasonal to 1-
year time scales, while poor prediction ability highlights loca-
tions where additional observations or modeling techniques
would be beneficial. Prediction metrics for three post-Sandy
datasets demonstrate that pre- and post-Sandy training data
were adequate for predicting post-extreme event recovery.
The results demonstrate that the BN presented here is a com-
putationally inexpensive tool to predict sub-annual beach evo-
lution after an extreme event.

We show through cross-validation tests between end-
member datasets (e.g., spatially limited, temporally dense or
spatially robust, temporally sparse) that data compiled from
different spatial coverages and temporal frequencies (1 to
12 months) can train a BN that is capable of making predic-
tions with nearly 50% accuracy, or more than three times than
would be predicted by the untrained model. The results sug-
gest that regular surveys at limited profile locations are able to
extrapolate to predict spatially comprehensive locations and
predict upper beach change accurately, although skill is
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sacrificed. Additionally, spatial variability in morphologic ob-
servations and beach configuration can balance limited tem-
poral resolution as suggested by the metrics when the model is
trained with the long-interval transect data. However, to max-
imize BN applicability, we recommend that training data en-
compass a suite of post-storm and fair-weather beach condi-
tions. Collectively, the work suggests that BNs and their data
requirements can be tailored to a specific set of predictive
requirements (e.g., time horizon, confidence, accuracy) mak-
ing this methodology highly applicable to a range of coastal
change scenarios, easily portable to other barrier islands or
sandy mainland beaches, and useful in assisting landscape
and habitat management on short-term planning horizons.
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